วันอังคารที่ 25 สิงหาคม พ.ศ. 2552

DST 07 -25/8/52

สรุปบทเรียน ทรี

ทรี (Tree) เป็นโครงสร้างข้อมูลที่ความสัมพันธ์ระหว่าง โหนดจะมีความสัมพันธ์ลดหลั่นกันเป็นลำดับชั้น (Hierarchical Relationship)ได้มีการนำรูปแบบทรีไปประยุกต์ใช้ในงานต่าง ๆ อย่างแพร่หลาย ส่วนมากจะใช้สำหรับแสดงความสัมพันธ์ระหว่างข้อมูลเช่น แผนผังองค์ประกอบของหน่วยงานต่าง ๆโครงสร้างสารบัญหนังสือ เป็นต้น
แต่ละโหนดจะมีความสัมพันธ์กับโหนดในระดับที่ต่ำลงมา หนึ่งระดับได้หลาย ๆ โหนดเรียกโหนดดังกล่าวว่า โหนดแม่ (Parent orMother Node)โหนดที่อยู่ต่ำกว่าโหนดแม่อยู่หนึ่งระดับเรียกว่า โหนดลูก (Child or Son Node)โหนดที่อยู่ในระดับสูงสุดและไม่มีโหนดแม่เรียกว่า โหนดราก (Root Node)
โหนดที่มีโหนดแม่เป็นโหนดเดียวกันเรียกว่า โหนดพี่น้อง (Siblings)โหนดที่ไม่มีโหนดลูก เรียกว่าโหนดใบ (Leave Node)เส้นเชื่อมแสดงความสัมพันธ์ระหว่างโหนดสองโหนดเรียกว่า กิ่ง (Branch)

นิยามของทรี
1. นิยามทรีด้วยนิยามของกราฟทรี คือ กราฟที่ต่อเนื่องโดยไม่มีวงจรปิด (loop) ในโครงสร้าง โหนดสองโหนดใด ๆ ในทรีต้องมีทางติดต่อกันทางเดียวเท่านั้น และทรีที่มี N โหนด ต้องมีกิ่งทั้งหมด N-1 เส้น
2. นิยามทรีด้วยรูปแบบรีเคอร์ซีฟทรีประกอบด้วยสมาชิกที่เรียกว่าโหนด โดยที่ ถ้าว่าง ไม่มีโหนดใด ๆ เรียกว่านัลทรี (Null Tree) และถ้ามีโหนดหนึ่งเป็นโหนดราก ส่วนที่เหลือจะแบ่งเป็นทรีย่อย (Sub Tree)T1, T2, T3,…,Tk โดยที่ k>=0 และทรีย่อยต้องมีคุณสมบัติเป็นทรี

นิยามที่เกี่ยวข้องกับทรี
1. ฟอร์เรสต์ (Forest)หมายถึง กลุ่มของทรีที่เกิดจากการเอาโหนดรากของทรีออกหรือ เซตของทรีที่แยกจากกัน(Disjoint Trees)
2. ทรีที่มีแบบแผน (Ordered Tree)หมายถึง ทรีที่โหนดต่าง ๆ ในทรีนั้นมีความสัมพันธ์ที่แน่นอน เช่น ไปทางขวาไปทางซ้าย เป็นต้น
3. ทรีคล้าย (Similar Tree) คือทรีที่มีโครงสร้างเหมือนกัน หรือทรีที่มีรูปร่างของทรีเหมือนกัน โดยไม่คำนึงถึงข้อมูลที่อยู่ในแต่ละโหนด
4. ทรีเหมือน (Equivalent Tree) คือทรีที่เหมือนกันโดยสมบูรณ์ โดยต้องเป็นทรีที่คล้ายกันและแต่ละโหนดในตำแหน่งเดียวกันมีข้อมูลเหมือนกัน
5. กำลัง (Degree) หมายถึงจำนวนทรีย่อยของโหนด นั้น ๆ
6. ระดับของโหนด (Level of Node) คือระยะทางในแนวดิ่งของโหนดนั้น ๆ ที่อยู่ห่างจากโหนดราก เมื่อกำหนดให้ โหนดรากของทรีนั้นอยู่ระดับ 1และกิ่งแต่ละกิ่งมีความเท่ากันหมด คือ ยาวเท่ากับ 1หน่วย ซึ่งระดับของโหนดจะเท่ากับจำนวนกิ่งที่น้อยที่สุดจากโหนดรากไปยังโหนดใด ๆ บวกด้วย 1และจำนวนเส้นทางตามแนวดิ่งของโหนดใด ๆ ซึ่งห่างจากโหนดราก เรียกว่า ความสูง (Height) หรือความลึก (Depth)

การแทนที่ทรีในหน่วยความจำหลัก
การแทนที่โครงสร้างข้อมูลแบบทรีในความจำหลักจะมีพอยเตอร์เชื่อมโยงจากโหนดแม่ไปยังโหนดลูก แต่ละโหนดต้องมีลิงค์ฟิลด์เพื่อเก็บที่อยู่ของโหนดลูกต่าง ๆ นั่นคือจำนวน ลิงค์ฟิลด์ของแต่ละโหนดขึ้นอยู่กับจำนวนของโหนดลูกการแทนที่ทรี ซึ่งแต่ละโหนดมีจำนวนลิงค์ฟิลด์ไม่เท่ากัน ทำให้ยากต่อการปฏิบัติการ วิธีการแทนที่ที่ง่ายที่สุดคือ ทำให้แต่ละโหนดมี จำนวนลิงค์ฟิลด์เท่ากัน โดยอาจใช้วิธีการต่อไปนี้
1. โหนดแต่ละโหนดเก็บพอยเตอร์ชี้ไปยังโหนดลูกทุกโหนด การแทนที่ทรีด้วยวิธีนี้ จะให้จำนวนฟิลด์ในแต่ละโหนดเท่ากันโดยกำหนดให้มีขนาดเท่ากับจำนวนโหนดลูกของโหนดที่มีลูกมากที่สุด โหนดใดไม่มีโหลดลูกก็ให้ค่าพอยเตอร์ในลิงค์ฟิลด์นั้นมีค่าเป็น Nullและให้ลิงค์ฟิลด์แรกเก็บค่าพอยเตอร์ชี้ไปยังโหนด ลูกลำดับที่หนึ่ง ลิงค์ฟิลด์ที่สองเก็บค่าพอยเตอร์ชี้ไปยังโหนดลูกลำดับที่สอง และลิงค์ฟิลด์อื่นเก็บค่าพอยเตอร์ของโหนดลูกลำดับ ถัดไปเรื่อย ๆ
2. แทนทรีด้วยไบนารีทรีเป็นวิธีแก้ปัญหาเพื่อลดการ สิ้นเปลืองเนื้อที่ในหน่วยความจำก็คือกำหนดลิงค์ฟิลด์ให้มีจำนวนน้อยที่สุดเท่าที่จำเป็นเท่านั้นโดยกำหนดให้แต่ละโหนดมีจำนวนลิงค์ฟิลด์สองลิงค์ฟิลด์-ลิงค์ฟิลด์แรกเก็บที่อยู่ของโหนดลูกคนโต-ลิงค์ฟิลด์ที่สองเก็บที่อยู่ของโหนดพี่น้องที่เป็นโหนดถัดไปโหนดใดไม่มีโหนดลูกหรือไม่มีโหนดพี่น้องให้ค่าพอยน์เตอร์ในลิงค์ฟิลด์มีค่าเป็น Null

โครงสร้างทรีที่แต่ละโหนดมีลิงค์ฟิลด์แค่สองลิงค์ฟิลด์ ซึ่งช่วยให้ประหยัดเนื้อที่ในการจัดเก็บได้มาก เรียกโครงสร้างทรีที่แต่ละโหนดมีจำนวนโหนดลูกไม่เกินสองหรือแต่ละโหนดมีจำนวนทรีย่อยไม่เกินสองนี้ว่า ไบนารีทรี (Binary Tree)

ไบนารีทรีที่ทุก ๆ โหนดมีทรีย่อยทางซ้ายและทรีย่อยทางขวา ยกเว้นโหนดใบ และโหนดใบทุกโหนดจะต้องอยู่ที่ระดับเดียวกันเรียกว่า ไบนารีทรีแบบสมบูรณ์ (complete binary tree)สามารถคำนวณจำนวนโหนดทั้งหมดในไบนารีทรีแบบสมบูรณ์ได้ถ้ากำหนดให้ L คือระดับของโหนดใด ๆ และN คือจำนวนโหนดทั้งหมดในทรีจะได้ว่า
ระดับ 1 มีจำนวนโหนด 1 โหนด
ระดับ 2 มีจำนวนโหนด 3 โหนด
ระดับ 3 มีจำนวนโหนด 7 โหนด
ระดับ L มีจำนวนโหนด 2ยกกำลังL – 1 โหนด

การแปลงทรีทั่วไปให้เป็นไบนารีทรี
ขั้นตอนการแปลงทรีทั่วๆ ไปให้เป็นไบนารีทรี มีลำดับขั้นตอนการแปลง ดังต่อไปนี้
1. ให้โหนดแม่ชี้ไปยังโหนดลูกคนโต แล้วลบความสัมพันธ์ ระหว่างโหนดแม่และโหนดลูกอื่น ๆ
2. ให้เชื่อมความสัมพันธ์ระหว่างโหนดพี่น้อง
3. จับให้ทรีย่อยทางขวาเอียงลงมา 45 องศา

การท่องไปในไบนารีทรี
ปฏิบัติการที่สำคัญในไบนารีทรี คือ การท่องไปในไบนารีทรี (Traversing Binary Tree) เพื่อเข้าไปเยือนทุก ๆโหนดในทรี ซึ่งวิธีการท่องเข้าไปต้องเป็นไปอย่างมีระบบแบบแผน สามารถเยือนโหนดทุก ๆ โหนด ๆ ละหนึ่งครั้งวิธีการท่องไปนั้นมีด้วยกันหลายแบบแล้วแต่ว่าต้องการลำดับขั้นตอนการเยือนอย่างไร โหนดที่ถูกเยือนอาจเป็นโหนดแม่ (แทนด้วย N) ,ทรีย่อยทางซ้าย (แทนด้วย L) หรือทรีย่อยทางขวา (แทนด้วย R)

1. การท่องไปแบบพรีออร์เดอร์(Preorder Traversal)
เป็นการเดินเข้าไปเยือนโหนดต่าง ๆ ในทรีด้วยวิธีNLR มีขั้นตอนการเดินดังต่อไปนี้
(1) เยือนโหนดราก
(2) ท่องไปในทรีย่อยทางซ้ายแบบพรีออร์เดอร์
(3) ท่องไปในทรีย่อยทางขวาแบบพรีออร์เดอร์
2.การท่องไปแบบอินออร์เดอร์(Inorder Traversal)
เป็นการเดินเข้าไปเยือนโหนดต่าง ๆในทรีด้วยวิธี LNRมีขั้นตอนการเดินดังต่อไปนี้
(1) ท่องไปในทรีย่อยทางซ้ายแบบอินออร์เดอร์
(2) เยือนโหนดราก
(3) ท่องไปในทรีย่อยทางขวาแบบอินออร์เดอร์
3. การท่องไปแบบโพสออร์เดอร์(Postorder Traversal)
เป็นการเดินเข้าไปเยือนโหนดต่าง ๆในทรีด้วยวิธี LRN มีขั้นตอนการเดินดังต่อไปนี้
(1) ท่องไปในทรีย่อยทางซ้ายแบบโพสต์ออร์เดอร์
(2) ท่องไปในทรีย่อยทางขวาแบบโพสต์ออร์เดอร์
(3) เยือนโหนดราก

ไม่มีความคิดเห็น:

แสดงความคิดเห็น